

- Maximum channel slope: 1.0 %
- Culvert at slope of natural channel.
- Maximum Culvert Length: 50 feet
- Suitable only where culvert does not excessively constrict the active floodplain.

For details, see *Guidelines for the Design of*Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase_=Reports_and_Documents"

TREATMENTS FOR AQUATIC ORGANISM PASSAGE VERMONT LOW-SLOPE CULVERT DESIGN

Vermont Department of Fish And Wildlife 2009

Step—pool channel for stream simulation within culvert or profile control. Pool segments are located outside of culvert.

For details, see *Guidelines for the Design of*Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase_=Reports_and_Documents"

TREATMENTS FOR AQUATIC ORGANISM PASSAGE STEP POOL CHANNEL WITH POOL SEGMENTS

Vermont Department of Fish And Wildlife 2009

PLAN VIEW

For details, see Guidelines for the Design of Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase_=Reports_and_Documents"

TREATMENTS FOR AQUATIC ORGANISM PASSAGE STEP-POOL STREAM SIMULATION

TREATMENTS FOR AQUATIC ORGANISM PASSAGE CHUTE AND POOL SEQUENCE

The Cascade is a complex series of steps at low flow and a rough cascade at higher flows. Boulders are in scattered pattern. Most boulders contact each other.

For details, see Guidelines for the Design of Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase =Reports and Documents"

TREATMENTS FOR AQUATIC ORGANISM PASSAGE **CASCADE CHANNEL**

Note:

profile control.

TREATMENTS FOR AQUATIC ORGANISM PASSAGE BOULDER WEIR

Vermont Department of Fish And Wildlife 2009

062309

TREATMENTS FOR AQUATIC ORGANISM PASSAGE LOG WEIR

Vermont Department of Fish And Wildlife 2009

041909

TREATMENTS FOR AQUATIC ORGANISM PASSAGE LOG WEIR WITH LOG CRIB BALLAST

LOW FLOW NOTCH DETAILS

For details, see Guidelines for the Design of Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase =Reports and Documents"

TREATMENTS FOR AQUATIC ORGANISM PASSAGE **LOG WEIR**

Vermont Department of Fish And Wildlife 2009

NOTE: Design dimensions D, L, and Z2 control roughness and minimum depth. See design guidelines for details

For details, see *Guidelines for the Design of*Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase =Reports and Documents"

TREATMENTS FOR AQUATIC ORGANISM PASSAGE TYPICAL CULVERT BAFFLE STYLES

For details, see *Guidelines for the Design of*Stream/Road Crossings for Passage of Aquatic Organisms in Vermont, 2009 available at http://www.vtfishandwildlife.com/library.cfm libbase_=Reports_and_Documents"

- 1. All steel to be galvanized after fabrication.
- 2. Due to possible deformation of pipe, confirm actual shape of each baffle in field before fabrication.

TREATMENTS FOR AQUATIC ORGANISM PASSAGE EXPANSION RING CULVERT BAFFLE 1/2

TREATMENTS FOR AQUATIC ORGANISM PASSAGE EXPANSION RING CULVERT BAFFLE 2/2